2024 年度 化学工学技士(基礎)試験問題 第一部 13:00~15:20

問題 A1 次の記述のうち,正しいものを2つ選びなさい.(配点5点)

- (1) 単成分系において,密閉容器内にて気相と液相の2相が共存平衡状態であるとする. その際,一定温度にて気相と液相の体積割合が異なっていても気相圧力は一定の値となる.
- (2) 実在気体では、温度が高いほど、圧力が低いほど理想気体からのずれが大きくなる.
- (3) 実在溶液にて、各成分の気相における分圧は、液相中の各成分のモル分率と各成分の飽和蒸気圧の積となる.
- (4) 理想気体の等温可逆圧縮では、なされた仕事は全て気体の内部エネルギーの増加に使われる.
- (5) Henry の法則とは,気体の液体に対する溶解度が液体の飽和蒸気圧に比例するという法則である. (6) 理想気体の混合物では,各成分の体積分率とモル分率は等しい.

物質 A が界面を通して流体本体中に移動するとき,単位面積・単位時間あたりの物質移動量 N_A は物質移動係数 k を用いて式(1)で表される.

$$N_{\rm A} = k(C_{\rm i} - C)$$

ここで、 C_i は物質 A の界面濃度、C は A の流体本体濃度である.また、濃度境膜の厚さを δ_c とすると、物質移動係数 k は A の拡散係数 D を用いて $k = D/\delta_c$ と表される.

球形固体粒子が流体中に溶解あるいは昇華するときの物質移動係数 k は, 粒子径 d, 固体粒子と 流体の相対速度 u, 流体の密度 ρ, 粘度 μ, 拡散係数 D に依存すると考えられる.本問題では, 次 元解析を用いてこのような系の物質移動係数 k がどのような無次元数で表されるかを調べる.

物質移動係数 k を d, u, p, µ, D のべき乗式で表す.

 $k = A d^{\alpha} u^{\beta} \rho^{\gamma} \mu^{\delta} D^{\varepsilon}$

(2)

(1)

ここで, A は無次元の比例定数である.長さ,質量,時間の次元に対するべき乗指数の関係を求めると,以下の式が成り立つ.

長さについて	$1 = \alpha + \beta - 3\gamma + $ a $\delta + $ b ε	(3)
質量について	$0 = \gamma + $ $ c \delta $	(4)
時間について	$1 = \beta + $ d $\delta + $ e ε	(5)

これらの式を整理すると式(2)は次式で表される.

$$k = A\left(\frac{D}{d}\right) X^{\beta} Y^{1-\varepsilon} \tag{6}$$

ここで, $X = \begin{bmatrix} f \end{bmatrix}$, $Y = \begin{bmatrix} g \end{bmatrix}$ である. 上式を変形すると次の無次元式が得られる.

$$\frac{kd}{D} = AX^{\beta}Y^{1-\varepsilon} \tag{7}$$

式中の $\frac{kd}{D}$ を h 数, Xを i 数, Yを j 数とよぶ.

 [候補群]

 a
 ~ e
 (1) -3
 (2) -2
 (3) -1
 (4) 0
 (5) 1
 (6) 2
 (7) 3

 f
 (1) $\rho u/(\mu d)$ (2) $\mu/(\rho u d)$ (3) $\rho u d/\mu$ (4) u d/D (5) D/(u d)

 g
 (1) $\mu/(\rho D)$ (2) $\rho D/\mu$ (3) $\rho/(D\mu)$ (4) $\rho \mu/D$ (5) $D/(\rho \mu)$

 h
 ~ j
 (1) Prandtl
 (2) Reynolds
 (3) Schmidt
 (4) Sherwood
 (5) Stanton

1)プロセス流体の熱交換に使用される有機系熱媒体を高温操作で長時間使用すると、一般に熱分解 反応が進行する.分解生成物は加熱管に付着しトラブルの原因となるので、適切な段階で熱媒体を 装置から抜き出し、再生処理する必要が生じる.

熱媒体の劣化速度は未劣化の熱媒体の濃度 C に依存すると考えられるので、一次反応を仮定すると、劣化反応速度 $r_{\rm D}$ は式(1)で近似される.

 $r_{\rm D} = -{\rm d}C/{\rm d}t = kC$

(1)

熱媒体の初期濃度を C_0 , 再生処理が必要となるときの未劣化熱媒体の濃度を C_{cr} とし, 濃度が C_0 から C_{cr} に低下するまでの時間を耐用年数 t_{cr} とすると,式(1)より耐用年数 t_{cr} は劣化反応速度 定数 k を用いて $t_{cr} =$ a と表される.

2)図 A3 は、ある熱媒体メーカーによる使用温度 T [K] と耐用年数 t_{cr} [y]のテスト結果を示したグラフである.縦軸変数は ln(1/t_{cr})、横軸変数は 1/T であり、▲は熱媒体のグレードA、●はグレードBの結果である.いずれも直線で良好に近似され、同一温度では、グレードAの方がグレードBよりも耐用年数は b.グレードBを300℃で使用したときの耐用年数は c と推定される.また、グレードAを300℃で使用したときの耐用年数は c と推定される.また、グレードAを300℃で使用したときの d 倍になると推定される.

図 A3

また, $t_{cr} =$ の関係を用いると, 図 A3 の直線関係から式(1)の劣化反応速度定数 k は式 (2)の Arrhenius の式に従うことが分かる.

$$k = A \exp(-E/RT)$$
 (2)
グラフの傾きから e が求められ, 耐用年数は式(3)を用いて相関される.
 $t_{cr} = B \exp(E/RT)$ (3)

[候補群] a (1) $(1/2k)C_0$ (2) $(1/k)\ln(C_{cr}/C_0)$ (3) $(1/k)\ln 2$ (4) $(1/k)(1/C_0)$ (5) $(1/k)\ln(C_0/C_{cr})$ b (1) 短い (2) 長い (1)1年 (2)5年 (3)10年 (4)15年 (5)20年 С (3) 4 (5) 8 (1) 1.5 (2) 2(4) 6 d (1) 平衡定数 (2) 活性化エネルギー (3) 頻度因子 (4) 標準エントロピー変化 е (5) 反応速度定数

問題 A4 次の文中の空欄にあてはまる最も適切な答えを候補群から選びなさい.(配点 10 点)

温度 T, 圧力 p, 体積 V の理想気体の熱容量について考える. モル内部エネルギー U, モルエン タルピー H を用いて, 定圧モル熱容量 $C_p =$ a , 定容モル熱容量 $C_V =$ b と表される.

0.50 mol の理想気体を1気圧(101.3 kPa), 300 K にてなめらかに動くピストンのついたシリンジ に充填し、400 K まで加熱して可逆的に膨張させる. ピストンの熱容量は無視できるとしたときの加熱に必要な熱は c kJ である. また,理想気体が外界からされた仕事は、受け取る方向を正にとると、 d kJ である.

一方,同じ条件の理想気体を密閉容器に充填し,300 K から 400 K まで加熱する場合に必要な熱は e kJ である.

なお、気体定数 R は 8.31 J·mol⁻¹·K⁻¹であり、この理想気体の定圧モル熱容量 C_p [kJ·mol⁻¹·K⁻¹] は、温度 T [K] を用いて以下の式で表されるとする.

 $C_p = 0.02814 + 4.616 \times 10^{-6}T$

a	(1) $\left(\frac{\partial U}{\partial T}\right)_p$	(2) $\left(\frac{\partial H}{\partial T}\right)_p$	(3) $\left(\frac{\partial U}{\partial p}\right)_T$	(4) $\left(\frac{\partial H}{\partial p}\right)_T$	(5) $\left(\frac{\partial T}{\partial H}\right)_p$
b	(1) $\left(\frac{\partial U}{\partial T}\right)_V$	(2) $\left(\frac{\partial H}{\partial T}\right)_V$	(3) $\left(\frac{\partial U}{\partial V}\right)_T$	(4) $\left(\frac{\partial H}{\partial V}\right)_T$	(5) $\left(\frac{\partial T}{\partial H}\right)_V$
С	(1) 1.5	(2) 3.0	(3) 3.2	(4) 7.2	(5) 15
d	(1) -0.83	(2) -0.42	(3) 0.21	(4) 0.42	(5) 0.83
е	(1) 0.11	(2) 1.1	(3) 2.1	(4) 4.3	(5) 15

気体と液体間の熱交換をする場合には熱交換器の a 側にフィンを付けて伝熱面積を大きく することにより伝熱の b する構造が用いられる.

図 A5 にフィン付き伝熱壁の断面図を示す.フィン付き 側を流体 C,フィン無し側を流体 H が流れている.フィン 内部の熱伝導により生じる温度分布のため、局所のフィン 表面温度 T_f はフィン取り付け部の壁面温度 T_W とは異な り,フィン材料の熱伝導率 λ が大きいほど T_f は T_W に近 づく.そこで、フィンの効果を評価するために、フィン効 率 η_f を実際のフィン伝熱量 Q_f とフィン全表面の温度が T_W となるときの伝熱量 Q_f^{∞} (熱伝導率が無限大)の比とし

図 A5 フィン付き面を持つ伝熱壁

て定義する.いま、フィン表面の局所熱伝達係数 h_f が場所に関係なく一定であると仮定すると、フィン効率は次式で表すことができる.

$$\eta_{\rm f} = \frac{Q_{\rm f}}{Q_{\rm f}^{\infty}} = \frac{\int h_{\rm f} (T_{\rm f} - T_{\rm C}) dA_{\rm f}}{h_{\rm f} (T_{\rm W} - T_{\rm C}) A_{\rm f}} = \frac{T_{\rm fav} - T_{\rm C}}{T_{\rm W} - T_{\rm C}}$$
(1)

ただし, $T_{\rm C}$ は流体 C の温度, $A_{\rm f}$ はフィン部分のみの表面積, $T_{\rm fav} =$ c はフィン全表面に対する平均フィン表面温度である.

壁部分にも熱伝達係数 h_f が適用できるとして、フィン付き側の面積 A_W の壁部分と面積 A_f のフィン部分を通した伝熱量を求め、平均フィン表面温度 T_{fav} に式(1)の関係を代入して整理すると、フィン付き側の全伝熱面から流体 C への実際の伝熱量 Q は次式で与えられる.

$$Q = h_{\rm f}A_{\rm W}(T_{\rm W} - T_{\rm C}) + h_{\rm f}A_{\rm f}(T_{\rm fav} - T_{\rm C}) = h_{\rm f}(A_{\rm W} + \eta_{\rm f}A_{\rm f})(T_{\rm W} - T_{\rm C})$$
(2)

流体 H の温度を $T_{\rm H}$, フィン無し側の伝熱面積を $A_{\rm H}$, 同じく熱伝達係数を $h_{\rm H}$, 伝熱壁の厚さを ℓ とすると、両流体間の伝熱量 Q は次式で与えられる.

$$Q = \frac{T_{\rm H} - T_{\rm C}}{\frac{1}{h_{\rm H}A_{\rm H}} + \frac{\ell}{\lambda A_{\rm H}} + \frac{1}{h_{\rm f}(A_{\rm W} + \eta_{\rm f}A_{\rm f})}}$$
(3)

分母の各項は 3 つの伝熱過程の d を表している.いま, $A_{\rm H} \approx A_{\rm W} \ll \eta_{\rm f} A_{\rm f}$ かつ, 伝熱壁が金属で $\lambda/\ell \gg h_{\rm f}, h_{\rm H}$ とすると, 気体と液体間の熱交換では, 通常, 気体側の熱伝達係数 $h_{\rm G}$ と液体側の熱伝達係 $h_{\rm L}$ には e の関係であるので, フィン付き側に a を流すことによって伝熱過程全体の b する効果が得られる.

a
 (1) 気体
 (2) 液体

 b
 (1) 抵抗を小さく
 (2) 抵抗を大きく
 (3) 推進力を小さく
 (4) 推進力を大きく

 c
 (1)
$$\int T_{f} dA_{f}$$
 (2) $\int h_{f} T_{f} dA_{f}$
 (3) $\int h_{f} T_{f} dA_{f} / A_{f}$
 (4) $\int T_{f} dA_{f} / A_{f}$
 (5) $A_{f} / \int T_{f} dA_{f}$

 d
 (1) 伝熱面積
 (2) 伝熱推進力
 (3) 伝熱抵抗
 (4) 熱流束

 e
 (1) $h_{L} \ll h_{G}$
 (2) $h_{L} \approx h_{G}$
 (3) $h_{L} \gg h_{G}$

+分に湿った固体を熱風連続乾燥により乾燥させる.熱風による乾燥過程では,一般的に a 乾燥期間と b 乾燥期間の2つの期間が存在する. a 乾燥期間では,材料表面が水分で+ 分に覆われ,材料に供給される熱量と蒸発によって失う熱量が釣り合い,乾燥速度は時間とともに c.この期間では,乾燥速度は主に熱風の温度,湿度,流速によって決定される.一方, b 乾 燥期間では,材料表面の水分が不足し始め,乾燥速度は時間とともに d する.この期間では, 材料内部から表面への水分移動速度が乾燥速度を e する.

いま,水の蒸発速度 R を式(1)で表すとする.

$$R = -\frac{m}{A} \left(\frac{\mathrm{d}w}{\mathrm{d}t}\right) \tag{1}$$

ここで、m と A はそれぞれ材料の乾燥質量および表面積で、w は含水率、t は時間である.この 式を変形すると、

$$\int_{t_1}^{t_2} \mathrm{d}t = -\left(\frac{m}{A}\right) \int_{w_1}^{w_2} \left(\frac{1}{R}\right) \mathrm{d}w \tag{2}$$

乾燥質量 4 kg,表面積 1.5 m²の湿潤材料を含水率 0.60 から 0.10 まで乾燥させ、図 A6 に示す乾燥 曲線(乾燥速度 *R* [kg·m⁻²·h⁻¹] 対 含水率 *w* [(kg-水)·(kg-乾燥質量)⁻¹])を得た.式(2)より、この湿潤材料を含水率 0.60 から 0.20 まで乾燥させるときの時間は約 f h となる.

図 A6 乾燥曲線

試験当日は図 A6 の縦軸の単位に誤記がありました

a	(1) 定率	(2) 減率	(3) 一定	(4) 平衡	(5) 限界
b	(1) 定率	(2) 減率	(3) 一定	(4) 平衡	(5) 限界
С	(1) 増加する	(2) 減少する	(3) 一定に保	持される (4)	周期的に変化する
d	(1) 増加	(2) 減少	(3) 一定	(4) 増加の後	に減少 (5) 減少の後に増加
е	(1) 促進	(2) 支配	(3) 摂動化	(4) 周期化	(5) 振動化
f	(1) 3	(2) 6	(3) 9	(4) 3×10	(5) 6×10

図A7に示すような成分Aのリサイクル流 れを伴うプロセスにて,反応量論式が式(1) で表される液相反応を定常的に進行させる. プロセス入口における原料流体には成分 A のみが含まれ,生成物の B と C は含まれな い.反応器を出た生成物は,成分 A の一部の

みが分離され、反応器の入り口にリサイクルされている. プロセス入口における成分 A の流量は F_{A0} , プロセス出口における成分 A, B, C の流量は F_{Af} , F_{Bf} , F_{Cf} ,リサイクル流れにおける成分 A の流量 は R_A とする.

$$A \to 2B + C \tag{1}$$

成分Aのプロセス出口における総括反応率 x_Aは以下の式で与えられる.

$$x_{\rm A} = \boxed{a} / F_{\rm A0} \tag{2}$$

総括反応率 $x_A = 0.95$ のとき、プロセス出口における各成分 A、B、C の流量は以下のようになる.

$$F_{Af}/F_{A0} = b$$

$$F_{Bf}/F_{A0} = c$$

$$F_{Cf}/F_{A0} = d$$
(3)
(4)
(5)

一方,単通反応率
$$X_A$$
 は以下の式で与えられる.
 $X_A = \boxed{e}$ (6)
したがって,単通反応率 $X_A = 0.50$ であるとき,リサイクル比 $R_A/F_{A0} = \boxed{f}$ が得られる.

a	(1) $(F_{A0} - F_{Af})$	(2) F_{Af}	$(3) (F_{Af} - F_{A0})$	(4) $(F_{A0} - F_{Bf} - F_{Cf})$	(5) $(F_{\rm Af} - F_{\rm Bf} - F_{\rm C})$	f)
b	(1) 0.05	(2) 0.10	(3) 0.15	(4) 0.20	(5) 0.25	
С	(1) 0.80	(2) 0.90	(3) 0.95	(4) 1.60	(5) 1.90	
d	(1) 0.80	(2) 0.90	(3) 0.95	(4) 1.60	(5) 1.90	
е	(1) $(F_{A0} - F_{Af} -$	$R_{\rm A})/(F_{\rm A0})$	(2) $(F_{A0} +$	$(R_{\rm A} - F_{\rm Af})/(F_{\rm A0})$		
	(3) $(F_{A0} - F_{Af})/($	$(F_{\mathrm{A0}}+R_{\mathrm{A}})$	(4) $(F_{A0} -$	$F_{\mathrm{Af}} - R_{\mathrm{A}})/(F_{\mathrm{A0}} + R_{\mathrm{A}})$		
	(5) $(F_{A0} + R_A - R_A)$	$F_{\rm Af})/(F_{\rm A0}+F_{\rm A0})$	R _A)			
f	(1) 0.80	(2) 0.90	(3) 0.95	(4) 1.60	(5) 1.90	

単一球形粒子(粒子径 d_p ,密度 ρ_p)が流体(密度 ρ ,粘度 μ)中を相対速度 v で運動するとき, 粒子は流体から抵抗力 F を受ける. その大きさは,運動方向の粒子の断面積を用いて,次式で与え られる.

$$F = C_{\rm R} \left(\frac{\pi d_{\rm p}^2}{4} \right) \left(\frac{\rho v^2}{2} \right)$$

(1)

ここで, C_R は抵抗係数と呼ばれ, 粒子径基準の Reynolds 数 $Re_p =$ a の関数で表され, Stokes 域 ($Re_p < 2$)では $C_R = 24/Re_p$ が用いられる.よって, 粒子が流体から受ける抵抗力 F は b となる.これより, Stokes 域において粒子が流体から受ける抵抗力は c が支配因子であることがわかる.

次に,重力場において静止した空気中の粒子の重力沈降運動について考える.沈降する粒子に作用 する力は,重力,浮力,および抵抗力である.これより,粒子の体積を V_p とすると,粒子の運動方 程式は次式で表される.

$$V_{\rm p}\rho_{\rm p}\frac{\mathrm{d}\nu}{\mathrm{d}t} = V_{\rm p}\rho_{\rm p}g - \boxed{\mathrm{d}} - \boxed{\mathrm{b}}$$
(2)

ここで、t は時間、g は重力加速度である。粒子の沈降速度が増加すると、それに比例して粒子が流体から受ける抵抗力も増加するため、粒子の加速度は0に漸近して等速運動となる。このときの粒子の速度を終末沈降速度 v_t とよぶ、よって、式(2)より v_t は次式となる。

$$v_{\rm t} = \frac{g d_{\rm p}^{\ 2} (\rho_{\rm p} - \rho)}{18\mu} \tag{3}$$

以上を踏まえて、粒子径 5.0×10⁻⁵ m,密度 2.0×10³ kg·m⁻³の球形粒子が、静止した空気(密度 1.2 kg·m⁻³,粘度 1.8×10⁻⁵ Pa·s)中を重力沈降する場合について計算する.まず、粒子の沈降速度がわからないので、Stokes 域を仮定すると v_t は e m·s⁻¹となる.得られた v_t より Re_p を計算すると $Re_p < 2$ となり仮定が正しいことが確認できた.次に、この条件において、 v_t の 90%に達するまでの時間 $t_{0.9}$ と沈降距離 $S_{0.9}$ を計算する.式(2)を、緩和時間 $\tau = d_p^2 \rho_p / 18\mu$ と v_t を用いて変形すると、球形粒子の運動方程式は次の微分方程式となる.

(4)

したがって、初期条件を t = 0, v = 0 として式(4)を解くと、粒子の沈降速度は $v = _g$ となる. さらに、粒子の沈降速度 v を時間積分すると沈降距離 S を求めることができ、 $t_{0.9}$ は $_h_s$ 、 $S_{0.9}$ は $_i_m$ となる.

а	(1) $\rho\mu d_{\rm p}/v$	(2) $\rho_{\rm p}\mu d_{\rm p}/\nu$	(3) $v\mu d_p/\rho_p$	(4) $\rho v d_p / \mu$	(5) $\rho_{\rm p} v d_{\rm p} / \mu$
b	(1) $3\pi v d_p$	(2) $3\pi\rho v d_p$	(3) $3\pi\rho_{\rm p}vd_{\rm p}$	(4) $3\pi\mu\nu d_{\rm p}$	(5) $3\pi\mu\rho v d_p$
С	(1) 慣性力	(2) 重力	(3) 粘性力	(4) 分子間力	(5) 浮力
d	(1) $V_{\rm p}g$	(2) $V_{\rm p}\rho$	(3) $V_{\rm p}\rho_{\rm p}$	(4) $V_{\rm p}\rho g$	(5) $V_{\rm p}\rho_{\rm p}g$
е	(1) 0.015	(2) 0.038	(3) 0.076	(4) 0.15	(5) 0.38
f	(1) $(v_t - v)/\tau$	(2) (v -	$(v_t)/\tau$	(3) $(v - v_t)\rho_{\rm p}/\tau$	(4) $(v - v_t)\mu/\tau$
	(5) $(v - v_t)v/t$	τ			
g	(1) $v_t (1 + e^{-t/2})$	τ) (2) $v_t(e$	$(t-t/\tau - 1)$	(3) $v_t (1 - e^{-t/\tau})$	(4) $v_t (1 - e^{-\tau/t})$
	(5) $v_t^2 (1 - e^{-\tau})$	(t/t)			
h	(1) 8.9×10 ⁻⁴	(2) 8.9×10 ⁻³	(3) 3.6×10 ⁻²	(4) 8.9×10 ⁻²	(5) 3.6×10^{-1}
i	(1) 2.0×10 ⁻⁴	(2) 3.3×10 ⁻⁴	(3) 2.0×10 ⁻³	(4) 3.3×10 ⁻³	(5) 3.3×10^{-2}

第二部 15:45~16:45

問題 B1 次の文中の空欄にあてはまる最も適切な答えを候補群から選びなさい. (配点 10 点)

層流の充填層流れでは、長さLの区間の圧力降下Δpは、空塔速度u、粘度uに比例して変化する.

 $\Delta p/L = k\mu u$

(1)

ここで、kは充填層の幾何学的構造に依存する係数である.

デッドエンド沪過装置のモデルを図B1に示す.装置内に設置した沪材(面積A)を通して原液を 流通させ、固形物を沪材で阻止して沪液を得る。沪過開始とともに沪材上ではケーク(沪滓)層が 形成され、その厚さ L_c は沪過時間tとともに増大する.沪液の体積流量をQとすると、その空塔速 度uはu=Q/Aである.以下では、ケーク層を粒子充填層と見なし、式(1)を用いてデッドエンド沪 過の操作圧力, 沪過時間と沪液量の関係を検討する.

原液の固形物濃度を C [kg·(m³-液)⁻¹], 固形物の真密度を ρ_s [kg·m⁻³], ケーク層の空隙率を ε とす る. 通常,ケーク層中に含まれる液量は沪液量(体積 V [m³])に比べて微少であるので,それを無 視して固形物の物質収支をとると、ケーク層の厚さ L_c[m] は式(2)で表される.

 $L_{\rm c} =$ a $\times (Cv/\rho_{\rm s})$ (2)原液(濃度C) ここで、v = V/A は沪材単位面積あたりの沪液量.式(1)、(2)より ケーク層の圧力降下 Δp_c は、比抵抗 α を用いて式(3)で表される. $\Delta p_{c} = \mu \alpha C v u$ (3) ここで $\alpha = \begin{bmatrix} a \\ c \end{bmatrix} \times (k/\rho_s),$ その単位は $\begin{bmatrix} b \\ c \end{bmatrix}$ である. 沪過期 \wedge 間中で比抵抗 αが一定に保たれるケークを非圧縮性ケークとよ L_{c} $\Delta p_{\rm c} \Delta p_{\rm f}$ ぶ. (面積A) $\Delta p_{\rm m}$ $\Delta p_{\rm m} = \mu R_{\rm m} u$ (4) と表すと、沪過圧力 $\Delta p_f = \Delta p_m + \Delta p_c$ は式(5)で表される. 沪液 $\Delta p_{\rm f} = \mu R_{\rm m} u + \mu \alpha C v u$ (5) (流量Q, 体積V) 単位面積あたりの沪液量vと空塔速度uの関係はu = dv/dtであ 図 B1

るので、 $v_0 = | d | とすると、式(5)は式(6)となる.$

$$(v+v_0)\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\Delta p_{\mathrm{f}}}{\mu\alpha C} \tag{6}$$

 $\Delta p_f = -$ 定の操作では、沪過の進行とともに沪液流量が減少する、ケーク層が非圧縮性の場合、 沪過時間 t の間に得られる単位面積あたりの沪液量 v は, $K = 2\Delta p_f/(\mu \alpha C)$ を用いて式(7)で表される. (7)

$$v =$$
 e

[候補群]

(2) ε^{-1} (3) $1 - \varepsilon$ (4) $(1 - \varepsilon)^{-1}$ (5) $\varepsilon (1 - \varepsilon)^{-1}$ а (1) E $(3) \text{ kg}^{-1}$ (5) kg \cdot m⁻¹ $(2) \text{ m}^{-1}$ (4) $m \cdot kg^{-1}$ (1) m b (3) kg⁻¹ (4) m·kg⁻¹ (5) kg·m⁻¹ $(2) \text{ m}^{-1}$ c (1) m d $(1) R_{\rm m}/(\alpha C)$ $(2) \mu R_{\rm m}/(\alpha C)$ $(3) R_{\rm m}/(\mu \alpha C)$ $(4) \alpha C/R_{\rm m}$ (5) $\mu \alpha C/R_{\rm m}$ $\begin{array}{c} \underline{e} \\ \end{array} (1) v_0 + (v_0^2 + Kt)^{\frac{1}{2}} \\ \end{array} (2) - v_0 + (v_0^2 + 4Kt)^{\frac{1}{2}} \\ (3) - \frac{v_0}{2} + (v_0^2 + Kt)^{\frac{1}{2}} \\ \end{array}$ $(4)\frac{v_0}{2} + (v_0^2 + Kt)^{\frac{1}{2}} \quad (5) - v_0 + (v_0^2 + Kt)^{\frac{1}{2}}$

問題 B2 以下の B2-1~B2-3の 3 問のうちから1 問を選んで解答しなさい. B2-1 次の文中の空欄にあてはまる最も適切な答えを候補群から選びなさい.

SO₂を 1.0 mol%含む空気を気液向流接触型充填塔(図 B2-1)に塔底から 1.0 m³·s⁻¹ (25 °C, 100 kPa への換算値)で供給し,塔頂から供給する純水に吸収させて,出口空気の SO₂濃度を 0.10 mol% 以下にしたい. 図中,塔単位断面積あたりのガス流量は *G* [mol·m⁻²·s⁻¹],液流量は *L* [mol·m⁻²·s⁻¹], ガスと液中の SO₂のモル分率はそれぞれ *y*, *x* で表し,各量の下付添字 1,2 はそれぞれ塔底部,塔頂 部を意味する. モル分率 *x* の液相中 SO₂ と気液(溶解)平衡にある気相中の SO₂ のモル分率 *y*^{*} は $y^* = 35.7x$ で表されるものとする(逆に,気相 SO₂ モル分率*y* と平衡にある液相 SO₂ モル分率 *x** は $y = 35.7x^*$ となる). なお,気相は理想気体で,水の蒸発および水中への空気の溶解は無視でき,塔の断面積は 1.00 m²で一定とする.

- 1) 空気供給量をモル流量にすると $G_1 =$ a $mol \cdot m^{-2} \cdot s^{-1}$ である.
- 2) 塔頂から位置zまでの塔頂部との間での物質収支をガス側, 液側それぞれに考えると,

b =
$$Lx - L_2 x_2$$
 (1)
ここで題意より $x_2 = 0$ なので 操作線の式は次式となる.
 $y = c$ (2)

 3) 吸収塔で吸収される SO₂量は、式(1)と操作条件から計算する と <u>d</u> mol·m⁻²·s⁻¹となる.ここで、ガス吸収におけるガス 流量 G と液流量 L の流量比 L/G は流出液組成 (x₁) に依存 し、流出液の組成がガス組成と気液平衡にあるときに最小流 量比 (L/G)_{min}となる.計算すると(L/G)_{min} = <u>e</u> である.

図 B2-1 ガス吸収塔の流れ

4) 次に, ガス中の SO₂ 濃度が希薄のためガス流量 *G* が塔内で一定 ($G_1 \cong G_2 \cong G$) とみなして, 所定 の SO₂ 除去率を達成するための吸収塔高さを算出する.実際の液流量の条件を *L/G* = 2(*L/G*)_{min} とすると,式(1)から塔底の液組成 $x_1 = \begin{bmatrix} f \\ f \end{bmatrix}$, それに平衡であるガス組成 $y_1^* = \begin{bmatrix} g \\ g \end{bmatrix}$ が得られ る.ところで,塔内での微小区間 $z \sim z + dz$ での SO₂ の物質収支に関しては,単位体積あたりの 吸収速度 *N* [mol·m⁻³·s⁻¹] がガス側基準総括容量係数 $K_y a$ [mol·m⁻³·s⁻¹] とガス相中の組成勾配の 積で与えられる.

 $Gy|_{z+dz} - Gy|_z = d(Gy) = Ndz = K_y a(y - y^*)dz$ (3) ガス流量 G は塔内で一定として上式変形して dz を求め、それを塔全体で積分すると、塔高さ h が次式のように導出できる.

$$h = \int_{z=0}^{z=h} dz = \frac{G}{K_y a} \int_{y_2}^{y_1} \boxed{h} dy$$
(4)

ここで $K_y a = 22.5 \text{ mol·m}^{-3} \cdot s^{-1}$ とすると、分離条件の達成に必要な塔高さはh = i m となる. なお、塔内での組成勾配は対数平均値にて表されるとする.

а	(1) 0.410	(2) 2.23	(3) 40.3	(4) 44.6	(5) 140
b	$(1) Gy - G_2 y_2$	(2) $G(y - y_2)$	(3) $G_2 y_2 - G_1 y_1$	$(4) (G - G_2)y_2$	$(5) (y - y_2)G_2$
С	$\int (1) \frac{L}{G_2} x + y_2$	(2) $\frac{L}{G-G_2}x$	$(3) \ \frac{L}{G_2 - G_1} x$	$(4) \ \frac{L}{G}x + y_2$	(5) $\frac{L}{G}x + \frac{G_2}{G}y_2$
d	(1) 0.151	(2) 0.252	(3) 0.363	(4) 0.396	(5) 0.418
е	(1) 11.5	(2) 32.1	(3) 64.1	(4) 307	(5) 960
f	(1) 5.0×10 ⁻⁵	(2) 1.4×10 ⁻⁴	(3) 2.8×10 ⁻⁴	(4) 5.0×10 ⁻⁴	(5) 3.0×10 ⁻³
g	(1) 1.8×10 ⁻³	(2) 5.0×10^{-3}	(3) 1.0×10 ⁻²	(4) 1.8×10 ⁻²	(5) 1.1×10 ⁻¹
h	$] (1) \frac{1}{y - y*}$	$(2)\frac{1}{y-y_2}$	$(3)\frac{1}{y_2 - y}$	$(4)\frac{1}{y^*-y}$	$(5)\frac{y}{y^{*-1}}$
i	(1) 2.9	(2) 3.7	(3) 6.5	(4) 7.7	(5) 9.7

B2-2 次の文中の空欄にあてはまる最も適切な答えを候補群から選びなさい.

2成分混合物(原料 $W_0 = 100$ kmol,低沸成分のモル分率 $x_0 = 0.3$)から理論段3段相当の濃縮部をもつ回分精留塔(図 B2-2)を還流比4で運転することにより、スチル残液の低沸成分の組成をx = 0.01まで低減して、高沸成分を回収することを考える.なお、以下の考察では、相対揮発度は2.5(一定)、スチルは平衡蒸気が発生する理論段、気液の等モル流れ、スチル残液以外の蒸気、液ホールドアップは無視でき、塔頂の凝縮器は全縮器、還流液は沸点の液と仮定する.

単蒸留を行ったときのスチル残液量Wと低沸成分の液組成xおよび 平衡蒸気組成yの間の関係は次の Rayleigh の式で与えられる.

$$\ln\frac{W_0}{W} = \int_x^{x_0} \frac{\mathrm{d}x}{y - x} \tag{1}$$

回分精留塔の運転条件および上記仮定のもとで任意のスチル残液の組成*x*に対する留出液組成*x*_D を計算することができる.図 B2-3 にスチル残液の組成*x* = *x*₀のときの各理論段の組成を,表 B2-1 には*x* = 0.3~0.01 の範囲で得られた*x*~*x*_D 関係を示す.ここで,この*x*~*x*_D 関係を仮想の気液平衡 関係とみなすことにより,Rayleighの式(式(1))の右辺の積分を求めることができる.いま,図 B2-4 に示すように積分区間を区間①*x* = 0.3~0.1,区間②*x* = 0.1~0.05,区間③*x* = 0.05~0.01 の 3 区間 に分割すると,それぞれの積分の値は区間①は a ,区間②は 0.142,区間③は b となる.ス チル残液の組成*x* = 0.01 となったとき,スチル残液量*W* = c kmol,スチル残液中の高沸成分の 量は d kmol となる.また,運転条件の変更により高沸成分の回収率を上げたい場合,現在の条 件からスチルの蒸気発生量を増やす,あるいは留出液量 *D* を e ことで,濃縮部の分離性能を上 げる必要がある.

表 B2-	1 精留塔の <i>x~</i>	·x _D 関係	.0	1 15	
x	x _D	$\frac{1}{x_{\rm D}-x}$	0.8 2		
0.300	0.886	1.71			
0.200	0.795	1.68		_ \ ⁶ 5	F \
0.100	0.564	2.16	0.2	_	
0.050	0.336	3.50			321
0.010	0.0764	15.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{0.8}x_{\rm D}$ 1.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		図 E	32-3 回分精留塔	(理論段	🗵 B2-4 $\frac{1}{x_{-}-x}$ vs. x
		3	段+スチル(S))	の組成	xD-x
[候補群	É]				
а	(1) 0.091	(2) 0.181	(3) 0.362	(4) 0.465	(5) 0.724
b	(1) 0.037	(2) 0.074	(3) 0.186	(4) 0.372	(5) 0.465
С	(1) 24.6	(2) 37.9	(3) 41.7	(4) 60.0	(5) 68.0
d	(1) 0.21	(2) 0.42	(3) 37.6	(4) 41.3	(5) 67.3
е	(1) 減らす	(2) 変えない	(3) 増やす		

多成分混合ガスの膜透過において,成分間の相互 作用が無視できるとき,成分 i の透過流束 J_i は分圧 差に比例し,次式で表される.

 $J_i = Q_i/S = K_i(p_{hi} - p_{li})$ (1) ここで、 Q_i は成分 i の透過流量、S は膜面積、 K_i は 成分 i のパーミアンス(透過率)、 p_{hi} は非透過側 (供給側)の分圧、 p_{li} は透過側の分圧である.な

お、以下の考察においては、式(1)の適用にあたり、

供給ガス (成分1, 2) 非透過側 全圧 P_h $J_1 \ J_2 \ p_{h1} = P_h x$ う離膜 全圧 P_l 透過側 $p_{l1} = P_l y$ 図 B2-5 膜分離装置

膜分離装置の透過側、非透過側ともに理想気体の完全混合状態が仮定できるものとする.

膜面積 4 cm²の膜分離装置を用いて 2 成分混合ガスの分離実験を行った.実験では、非透過側圧力 $P_h = 1.0$ MPa、透過側圧力 $P_l = 0.10$ MPa、各成分の供給量はマスフローメータにて成分 1 が 1.5×10⁻⁴ mol·s⁻¹、成分 2 が 1.5×10⁻⁴ mol·s⁻¹となるように制御した.分離後のガス組成を分析したところ、透 過ガスの成分 1 のモル分率 y = 0.80、非透過ガスの成分 1 のモル分率 x = 0.30 であった.これらか ら、透過ガスの全流量は a と算出され、成分 1 の透過流量 $Q_1 =$ b mol·s⁻¹、透過流束 $J_1 =$ c mol·m⁻²·s⁻¹となる.さらに、使用した分離膜のパーミアンスを求めると、成分 1 は $K_1 =$ d mol·m⁻²·s⁻¹·Pa⁻¹となり、成分 2 については $K_2 = 8.8 \times 10^{-8}$ mol·m⁻²·s⁻¹·Pa⁻¹が得られた.

次に、この分離膜を用いて成分 1、成分 2 が等モルの混合ガス 200 mol·s⁻¹から成分 1 のモル分率 y = 0.90の透過ガスを得るために必要となる膜面積を求める.非透過側圧力は $P_h = 1.0$ MPa、透過 側圧力は $P_l = 0.10$ MPa である.式(1)から、各成分の透過流量 Q_i 、透過流束 J_i の間には次の関係 が成り立つ.

$$\frac{Q_1}{Q_2} = \frac{J_1}{J_2} = \frac{K_1(P_h x - P_l y)}{K_2(P_h(1-x) - P_l(1-y))}$$
(2)

また、これらの流量、流束の比は、モル分率を用いて次式で表される.

$$Q_1/Q_2 = J_1/J_2 =$$
 (3)

式(2),(3)に上記の値を代入し,非透過ガスの成分1モル分率 x を求めるとx = 0.47が得られた.物 質収支から計算される全透過流量 Qと組成 x, y から透過流量 $Q_1 = \begin{bmatrix} f \\ mol·s^{-1}$ が得られるので分離に必要となる膜面積,約 $\begin{bmatrix} g \\ m^2$ が求められる.

а	(1) 3.3×10 ⁻⁶	(2) 1.3×10 ⁻⁵	(3) 1.7×10 ⁻⁵	(4) 1.2×10 ⁻⁴	(5) 1.5×10 ⁻⁴
b	(1) 1.0×10 ⁻⁶	(2) 1.4×10 ⁻⁵	(3) 9.6×10 ⁻⁵	(4) 1.2×10 ⁻⁴	(5) 1.8×10 ⁻⁴
С	(1) 0.082	(2) 0.13	(3) 0.24	(4) 0.36	(5) 0.53
d	(1) 8.8×10 ⁻⁸	(2) 1.0×10 ⁻⁷	(3) 1.8×10 ⁻⁷	(4) 1.1×10 ⁻⁶	(5) 1.5×10 ⁻⁵
е	$(1)\frac{y}{1-y}$	(2) $\frac{1-y}{y}$	$(3)\frac{x}{1-x}$	$(4) \frac{y}{1-x}$	$(5)\frac{x}{1-y}$
f	(1) 10	(2) 13	(3) 17	(4) 26	(5) 31
g	(1) 10	(2) 13	(3) 17	(4) 26	(5) 31

問題 B3 以下の B3-1~B3-3 の3 問のうちから1 問を選んで解答しなさい. (配点 10 点) **B3-1** 次の文中の空欄にあてはまる最も適切な答えを候補群から選びなさい.

式(1)の液相一次反応を、連続槽型反応器(体積 V = 1.0 m³)を用いて行った. 原料流体には A の みが濃度 CA0 [mol·m-3]で含まれ、生成物 C は含まれない.反応器入口に供給される原料流体の体積 流量は $v = 6.0 \times 10^{-1} \text{ m}^3 \cdot \text{h}^{-1}$,反応速度定数は $k = 1.8 \text{ h}^{-1}$ である.

$$A \rightarrow C, \qquad -r_A = -kC_A \,[\mathrm{mol} \cdot \mathrm{m}^{-3} \cdot \mathrm{h}^{-1}]$$
 (1)

反応器内では,反応による流体の 体積変化はなく等温条件下で反応 が進行している.反応器内の流体 が完全混合状態であると仮定した とき, 空間時間は a hであり, 成分Aの反応率は b と求まる. 実際の成分 A の反応率は、上記

の完全混合状態を仮定したときよ り小さい値となった.この原因

連続槽型反応器の模式図 図 B3-1

は、原料流体の一部がショートカットし、未反応のまま反応器出口から排出されたためであった (図 B3-1(a)). そこで、反応器内の混合状態を、図 B3-1(b)のようにモデル化した. 原料流体のう ち,一部はバイパス流れ(体積流量 v_h)になり,未反応のまま反応器から排出される.残りの原料 流体(体積流量 $v_{\rm m} = v - v_{\rm h}$)は、体積Vの完全混合流れ部に流入して反応し、反応器出口から排 出されるとした.このモデルでは、バイパス流れは体積を持たない仮想的な管路であり、そこでは 反応は起こらないとする.

ここで, 体積流量比は

$$\alpha = v_{\rm m} / v = 0.75$$

(2)

であった. 完全混合流れ部から排出される流体に含まれる,仮想的な A の濃度と反応率を CAm と x_{Am} ,反応器出口から排出される流体に含まれる A の濃度と反応率を C_{Af} と x_{Af} とする.反応器出口 における成分Aの物質収支は、以下のようになる.

$$vC_{Af} = c$$

(3) 完全混合流れ部における空間時間は $\tau_m = \begin{bmatrix} d \end{bmatrix} h^{-1}$,反応率は $x_{Am} = \begin{bmatrix} e \end{bmatrix}$ となる.式(3)より,

 x_{Am} と x_{Af} の関係が導かれ、反応器出口における反応率 $x_{Af} = \int f$ が求まる.

[候補群]

a	(1) 0.50	(2) 0.60	(3) 0.83	(4) 1.20	(5) 1.67
b	(1) 0.40	(2) 0.50	(3) 0.60	(4) 0.75	(5) 0.90
С	(1) $v_{\rm b}C_{\rm A0}$	$+ v_{\rm m} C_{\rm Am}$	(2) $v_{\rm b} C$	$C_{A0} + v_{\rm m}C_{A0}$	$(3) v_{\rm b} C_{\rm Am} + v_{\rm m} C_{\rm Am}$
	(4) $v_{\rm b}C_{\rm Am}$	$v_{\rm m} + v_{\rm m} C_{\rm A0}$	(5) $v_{\rm m}$	Am	
d	(1) 0.80	(2) 1.11	(3) 1.60	(4) 2.22	(5) 2.40
е	(1) 0.50	(2) 0.60	(3) 0.75	(4) 0.80	(5) 1.00
f	(1) 0.50	(2) 0.60	(3) 0.75	(4) 0.80	(5) 1.00

図 B3-2 に示すようなフィードバック制御系を考える. ここで, Y は制御変数, R は設定値, U は操作 変数, D は外乱であり, G_c(s), G_P(s) はそれぞれコ ントローラおよび対象プロセスの伝達関数である.

図 B3-2

図より, $U = (R - Y)G_{C}(s)$, $Y = UG_{P}(s) + D$ であ るから,外乱が無い場合の R から Y への閉ループ伝達関数 G(s) は a となる. 時刻 t = 0 で設 定値を 0 から 1 にステップ的に変更した場合の閉ループ応答 Y は b で求められる.

対象プロセスの伝達関数が次式で表される場合を考える.

$$G_{\rm P}(s) = \frac{3}{2s+1} e^{-s} \tag{1}$$

このような形のシステムは c と呼ばれ,化学プロセスの近似モデルとしてよく用いられる.コ ントローラを $G_{c}(s) = K_{P}$ の比例制御 (P 制御)とすると,設定値を 0 から 1 にステップ変化させた 場合の Y の最終到達値は、ラプラス領域での最終値の定理より d と容易に求められる.しかし 実際には、閉ループ制御系が e でない場合には、振動したり発散したりするなどして時間が経 過しても定常状態には到達しない.このシステムの場合には、例えば K_{P} の値が 1 のときは定常値に 到達し収束するが、f のときは発散してしまう.

比例+積分制御(PI制御)の場合は、コントローラの伝達関数は $G_{C}(s) = K_{P}(1 + \frac{1}{T_{I}s})$ と表される.式(1)で表されるプロセスを PI 制御するとき、設定値を 0 から 1 にステップ変化させた場合の Y の最終到達値と設定値との差を求めると g となる.この差は h と呼ばれ、制御系の定常特性を表す重要な値である.

[1	侯	繡	耝	É]
-	~	шы	ΉT	

	-				
a	$(1)\frac{G_{C}(s)G_{P}(s)}{1+G_{C}(s)G_{P}(s)}$	$(2) \frac{1+G_{C}(s)G_{P}(s)}{G_{C}(s)G_{P}(s)}$	$(3)\frac{G_{C}(s)+G_{P}(s)}{1+G_{C}(s)G_{P}(s)}$	$\frac{G(s)}{G(s)}$ (4) $\frac{G_{C}(s)}{G_{C}(s)}$	$+G_{\rm P}(s)$ $G_{\rm P}(s)$
	$(5)\frac{G_{C}(s)G_{P}(s)}{1-G_{C}(s)G_{P}(s)}$				
b	(1) G(s)	(2) sG(s)	(3) $G(s)/s$	(4) $1 + G(s)$	(5) s/G(s)
С	(1) 一次遅れ系	(2) 無駄時間系	(3) 積分系	(4) 無駄時間+-	ー次遅れ系
	(5) 積分+一次遅	れ系			
d	(1) 3 <i>K</i> _P	(2) $1 + 3K_{\rm P}$	$(3)\frac{1+3K_{\rm P}}{3K_{\rm P}}$	(4) 1	$(5) \frac{3K_{\rm P}}{1+3K_{\rm P}}$
е	(1) 線形	(2) 非線形	(3) 可制御	(4) ロバスト	(5)安定
f	(1) 0.1	(2) 0.2	(3) 0.5	(4) 0.8	(5) 1.5
g	(1) 0	(2) 0.5	(3) 1.0	(4) 1.5	(5) 2.0
h	(1) ノイズ	(2) ドリフト	(3) オフセット	(4) オーバーショ	1 — ŀ
	(5)エラー				

B3-3 次の文中の空欄にあてはまる最も適切な答えを候補群から選びなさい.

101.3 kPa, 354 K における 2-プロパノール(1) 一水(2) 系における気液平衡について考える.ただし,各物質の飽和蒸気圧 *p*_{i,sat} [Pa] は温度 *T* [K] の関数として次式で表される.

$$\ln p_{1,\text{sat}} = 22.718 - 3131.9/(T - 75.557)$$

 $\ln p_{2,\text{sat}} = 23.195 - 3814/(T - 46.29)$

2-プロパノールおよび水の飽和蒸気圧は、それぞれ $p_{1,sat} =$ a Pa, $p_{2,sat} =$ b Pa となる. 成分 *i* の活量係数 γ_i は、全圧 *p*、液相組成 x_i および気相組成 y_i を用いて $\gamma_i =$ c の関係にある. 2-プロパノールの液相組成 $x_1 = 0.430$ 、気相組成 $y_1 = 0.579$ のとき、2-プロパノールおよび水の活量係数を算出すると、それぞれ $\gamma_1 =$ d と $\gamma_2 =$ e となる.

一方,101.3 kPa での2-プロパノールの沸点を飽和蒸気圧の式から計算すると <u>f</u> K であり、水の沸点は373 K であることと、上述のように $x_1 = 0.430$ の沸点が 354 K であること、さらに活量係数の値から考察すると本系の101.3 kPa の定圧気液平衡の特徴は <u>g</u> といえる.

a	(1) 9.58×10^3	(2) 9.58×10^4	(3) 9.58×10 ⁵	(4) 2.95×10 ⁸	(5) 2.95×10 ¹¹
b	(1) 4.90×10^3	(2) 4.90×10 ⁴	(3) 4.90×10 ⁵	(4) 6.31×10^7	(5) 6.31×10 ¹⁰
С	(1) $\frac{x_i}{y_i}$	$(2)\frac{px_i}{p_{i,\text{sat}}y_i}$	$(3)\frac{p_{i,\text{sat}}x_i}{py_i}$	$(4)\frac{py_i}{p_{i,\text{sat}}x_i}$	$(5)\frac{p_{i,\text{sat}}y_i}{px_i}$
d	(1) 0.170	(2) 0.600	(3) 1.05	(4) 1.42	(5) 1.73
е	(1) 0.342	(2) 0.750	(3) 1.42	(4) 1.53	(5) 2.85
f	(1) 353	(2) 355	(3) 359	(4) 366	(5) 370
g	(1) 非共沸系	(2) 最低共沸系	(3) 最高共沸系	(4) 理想系	